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LETTER TO THE EDITOR 

Multiple soliton and bisoliton bound state solutions of the 
sine- Gordon equation and related equations in nonlinear optics 

P J Caudrey, J C Eilbeckt, J D Gibbon4 and R K Bullough 
Department of Mathematics, UMIST, PO Box 88, Manchester M60 lQD, UK 

Received 29 June 1973 

Abstract. A prescription is given for obtaining mixed multiple soliton and bisoliton 
bound state solutions of the sineGordon equation and of related equations in 
nonlinear optics. Some applications in nonlinear optics and other branches of 
physics are sketched. 

Recently multisoliton$ solutions of the sine-Gordon (SG)  equation (Hirota 1972, 
Caudrey et al 1973a) and related nonlinear optics equations (Caudrey et al 1973b,c, 
Eilbeck et a1 1973, Lamb 1973) have been discovered. The nature of these solutions 
when all the solitons have real amplitudes is now well understood. It was known that 
the two-soliton solution with a suitable choice of complex amplitudes gave a real 
composite pulse or bisoliton bound state. These pulse solutions were called ‘mesons’ 
for the SG equations (Perring and Skyrme 1962) and ‘071’ pulses for the self-induced 
transparency (SIT) equations (Lamb 1971). For conciseness we will use the generic 
name ‘bion’ for this sort of solution. The problem of choosing N1+2Nz complex 
coefficients in the general case to give Nl solitons and Nz bions was not solved: in this 
letter we report a solution of this problem and sketch some applications. 

The original form of the N soliton solution involved a determinant with elements 
of the form 

Mi&, 0 = (a,aj)l’z/(ai +ad{exp(4) + ( - 1Y+’exp( - e j ) }  (1) 

8, = B{(ar-ai-’)t+(ai+al-’)x}+6t. (2) 

where for the SG equation for example 

A single bion is obtained by taking the two-soliton solution with the ai and Si to be 
antihermitian pairs of complex constants. Although this choice gives a real solution the 
obvious generalization to multiple bion solutions gives a complex solution. To avoid 
this we consider the alternative but equivalent version of (1) (Caudrey er a1 1973c) 

Mi, = 2 / ( ~ {  + aj) ~0~h{$(81+ e,)}. (3) 
The transformation linking (1) and (3) involves a complex change in the Si. Equation 
(3), with the choice of a hermitian pair of complex constants in the two-soliton solution, 
gives the same bion solution. However the generalization to multiple bion solutions is 

t Address after 1st October 1973 : Department of Mathematics, Heriot-Watt University, Edinburgh, 
UK. 
$ Address after 1st October 1973: Istituto di Fisica dell’ Universiti, Pavia, Italy. 

A review of the subject of solitons has been given by Scott et a1 (1973). 
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now real since M , j  is symmetric. The solution to the multiple soliton/bion problem can 
now be stated: take the Nl +2N, soliton solution with the alternative determinant 
element (3); choose Nl real constants an,l and N,  pairs of complex constants an,2 and 
an,,*. The same prescription applies to both the SG solutions and the nonlinear optics 
equations solutions. 

The bion pulse is a single localized disturbance with internal oscillations. It has 
the same ‘collision stability’ as ordinary solitons, in both bion-bion and bion-soliton 
collisions. Both the ‘envelope’ and the ‘oscillations’ of the bion suffer a phase change 
in the collision, and a multiple collision is equivalent to a sequence of two bion/soliton 
collisions. Some applications of these remarkable solutions are sketched below, and 
will be reported in detail elsewhere. 

The SG equation has been used as a simple classical field theory model for elemen- 
tary particles (Perring and Skyrme 1962, Rubinstein 1970). In this model a soliton is a 
‘fundamental particle’ or ‘kink’ and a bion is a ‘meson’. Our results show that in this 
model a meson collides elastically with both other mesons and with kinks. Although 
the lagrangian is nonlinear, the phase shifts resulting from a multiple collision are linear 
sums of two-body phase shifts! 

The SIT equations describe the evolution of the envelope of a resonant carrier wave 
interacting with a medium of two-level atoms (Caudrey et al 1973b, Eilbeck et al 1973, 
Lamb 1971, 1973). The soliton pulse is known as a ‘2%’ pulse and the bion as a ‘07. 
pulse (the numbers refer to the time area of the pulse). Our results enable us for the 
first time to generate pulses which split up into Nl ‘2%’ pulses and N,  ‘0%’ pulses. As 
an example we plot in figure 1 a pulse which breaks up into a ‘2%’ pulse and a ‘On‘ 
pulse. As t --f k CO this pulse is described by the equation 

2ER sech B,*(cos BI* -17 sin tJI* tanh e,=) 
1 + r 2  sin ,eI* sech 20R* E(x, t )  -+ E3sechO3* + (4) 

t+* m 

where 

E, = E2* = ER+iEr,  17 .= ERIE1 (5a) 
e* = e + p  
YR+ -YR- = I~[{(ER -E3) + EI?/{(ER + E3)’ + E:}] (5b) 
yI+ -yI- = 2tan -‘{EI/’(ER-E3)}- 2tan -‘{EI/(ER+E3)) (5) 
Y3+ -Y3- = 2(%+ -YR-) ( 5 4  

The first term on the right-hand side of (4) is a soliton and the second term is a bion. 
Note that ‘pulse break-up’ is simply a ‘pulse collision’ at t = 0 viewed at times 
0 < t < co; the initial pulse can be constructed by the collision of two or more pulses 
previously injected into the medium, or by injecting the initial pulse shape itself directly 
into the system at t = 0. 

Another set of nonlinear optics equations with similar multisoliton solution are the 
so called reduced Maxwell-Bloch (RMB) equations (Caudrey et a1 1973b, c, Eilbeck 
et a1 1973), an approximate version of the full MB equations, appropriate at low den- 
sities. The RMB bion solution is (Eilbeck et a1 1973) the generalized version of the ‘ 2 ~ ’  
solution of the SIT equations. The carrier wave (the oscillitory part of the bion) need 
not be resonant in the RMB equations, and each bion can have a diferent carrier 
frequency. In the language of the SIT equations we can start with a ‘ ~ N T ’  pulse with a 
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carrier wave modulation which breaks up into N ‘277’ pulses, each with a different 
carrier frequency. 

Figure 1. Three-soliton pulse solution of the SIT equations splitting up into a ‘24  
pulse and a ‘On’ pulse. 

Bion solutions are important from a mathematical viewpoint as they shed light on 
the complicated theories (Whitham 1970, and references therein) of nonlinear wave 
propagation. For small amplitudes the bion is a stable (Eilbeck et a1 1973) slowly 
varying pulse envelope modulating a carrier wave. Our results suggest that for the 
general initial value problem the envelope forms a series of stable pulses, rather than a 
shock (for the equations considered here, at least) and that a dispersive term is needed 
in the general nonlinear dispersion relation for the carrier wave. A similar conclusion 
has been reached by Chu and Mei (1970, 1971) in the case of Stokes waves using a 
WKB perturbation technique. 

One of us (JCE) would like to thank the SRC for the financial support of a research 
assistantship. 
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